On Reductions of a Matrix Generalized Heisenberg Ferromagnet Equation

Tihomir Valchev

Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences

Joint work with A. Yanovski

XX ${ }^{\text {th }}$ International Conference
"Geometry, Integrability and Quantization"
2-7 June, 2018, Sts. Constantine and Elena, Varna

Introduction

- Classical $1+1$-dimensional Heisenberg ferromagnet equation (HF)

$$
\mathbf{S}_{t}=\mathbf{S} \times \mathbf{S}_{x x}, \quad \mathbf{S}^{2}=1
$$

$\mathbf{S}=\left(S_{1}, S_{2}, S_{3}\right)$ is the spin vector of a one-dimensional ferromagnet.

- HF has a zero curvature representation $[L(\lambda), A(\lambda)]=0$ with (Lax) operators $L(\lambda)$ and $A(\lambda)$ of the form:

$$
\begin{aligned}
L(\lambda) & =\mathrm{i} \partial_{x}-\lambda S, \quad \lambda \in \mathbb{C} \\
A(\lambda) & =\mathrm{i} \partial_{t}+\frac{\mathrm{i} \lambda}{2}\left[S, S_{x}\right]+2 \lambda^{2} S
\end{aligned}
$$

where $\mathrm{i}=\sqrt{-1}$ and

$$
S=\left(\begin{array}{cc}
S_{3} & S_{1}-\mathrm{i} S_{2} \\
S_{1}+\mathrm{i} S_{2} & -S_{3}
\end{array}\right)
$$

- Integrable generalizations of HF:
- Two component system [Gerdjikov-Mikhailov-Valchev] and [Yanovski-Valchev]:

$$
\begin{aligned}
& \mathrm{i} u_{1, t}+u_{1, x x}+\left[\left(\epsilon u_{1} u_{1, x}^{*}+u_{2} u_{2, x}^{*}\right) u_{1}\right]_{x}=0, \quad \epsilon^{2}=1 \\
& \mathrm{i} u_{2, t}+u_{2, x x}+\left[\left(\epsilon u_{1} u_{1, x}^{*}+u_{2} u_{2, x}^{*}\right) u_{2}\right]_{x}=0
\end{aligned}
$$

where u_{1} and u_{2} satisfy the constraint:

$$
\epsilon\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}=1
$$

- Vector system [Golubchik-Sokolov]:

$$
\begin{aligned}
& \mathrm{i} \mathbf{u}_{t}+\left[\left(\mathbf{u} \mathbf{v}^{T}\right)_{x} \mathbf{u}\right]_{x}+4\left(\mathbf{u}^{T} K \mathbf{v}\right) \mathbf{u}=0 \\
& \mathrm{i} \mathbf{v}_{t}-\left[\left(\mathbf{\mathbf { v u } ^ { T }}\right)_{x} \mathbf{v}\right]_{x}-4\left(\mathbf{u}^{T} K \mathbf{v}\right) \mathbf{v}=0
\end{aligned}
$$

K is a constant diagonal matrix and the vectors \mathbf{u} and \mathbf{v} fulfill:

$$
\mathbf{u}^{T} \mathbf{v}=1
$$

- Purpose of the talk: Discussion of a new integrable matrix generalizations of HF and its hierarchy (work in progress).
- Main object of study is the system:

$$
\begin{aligned}
& \mathbf{i} \mathbf{u}_{t}+\left[\left(\mathbf{u} \mathbf{v}^{T}\right)_{x} \mathbf{u}-\mathbf{u}\left(\mathbf{v}^{T} \mathbf{u}\right)_{x}\right]_{x}=0 \\
& \mathbf{i} \mathbf{v}_{t}+\left[\mathbf{v}\left(\mathbf{u}^{T} \mathbf{v}\right)_{x}-\left(\mathbf{v} \mathbf{u}^{\boldsymbol{T}}\right)_{x} \mathbf{v}\right]_{x}=0
\end{aligned}
$$

for the $n \times m$ matrices $\mathbf{u}(x, t)$ and $\mathbf{v}(x, t)$.

- Pseudo-Hermitian reduction: $\mathbf{v} \sim \mathbf{u}^{*}$.

Matrix Heisenberg Ferromagnet Equation

- Lax pair related to $\mathrm{SU}(m+n) / \mathrm{S}(\mathrm{U}(m) \times \mathrm{U}(n))$

Consider the following $L-A$ pair:

$$
\begin{aligned}
L(\lambda) & :=\mathrm{i} \partial_{x}-\lambda S, \quad \lambda \in \mathbb{C} \\
A(\lambda) & :=\mathrm{i} \partial_{t}+\lambda A_{1}+\lambda^{2} A_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
S & :=\left(\begin{array}{cc}
0 & \mathbf{u}^{T} \\
\mathbf{v} & 0
\end{array}\right), \quad A_{1}:=\left(\begin{array}{cc}
0 & \mathbf{a}^{T} \\
\mathbf{b} & 0
\end{array}\right) \\
A_{2} & :=\frac{2 r}{m+n} \mathbb{1}_{m+n}-S^{2}, \quad r \leq \min (m, n)
\end{aligned}
$$

Above, $\mathbf{u}(x, t), \mathbf{v}(x, t), \mathbf{a}(x, t)$ and $\mathbf{b}(x, t)$ are $n \times m$ matrices.

- Additional algebraic constraint

We require that

$$
S^{3}=S
$$

- Spectral properties of S

The above constraint means that S is diagonalizable with eigenvalues 0 (multiplicity $m+n-2 r$) and ± 1 (multiplicity r).

- Characteristic polynomial of ad s (technical remark) As a result of the above constraints we have:

$$
\operatorname{ad}_{s}^{5}-5 \operatorname{ad}_{s}^{3}+4 \operatorname{ad}_{s}=0 .
$$

This is why we can pick up

$$
\operatorname{ad}_{S}^{-1}:=\frac{1}{4}\left(5 \operatorname{ad}_{S}-\operatorname{ad}_{S}^{3}\right)
$$

as an (right) inverse operator of ad s.

- Additional algebraic constraints II Written in more detail, the constraint $S^{3}=S$ reads:

$$
\mathbf{u}^{T} \mathbf{v} \mathbf{u}^{T}=\mathbf{u}^{T}, \quad \mathbf{v} \mathbf{u}^{T} \mathbf{v}=\mathbf{v}
$$

Remark

The above relations mean that

$$
\left(\mathbf{u}^{T} \mathbf{v}\right)^{2}=\mathbf{u}^{T} \mathbf{v}, \quad\left(\mathbf{v} \mathbf{u}^{T}\right)^{2}=\mathbf{v}^{T}
$$

The two projectors have the same rank $r \leq \min (m, n)$.

- Special cases:
- Assume that $m<n$. Then both constraints can be replaced with

$$
\mathbf{u}^{T} \mathbf{v}=\mathbb{1}_{m} .
$$

In particular, if $\mathbf{u}(x, t)$ and $\mathbf{v}(x, t)$ are n-vectors we have:

$$
\mathbf{u}^{T} \mathbf{v}=1 .
$$

- When $m>n$ we can replace the constraints with

$$
\mathbf{v u}^{T}=\mathbb{1}_{n} .
$$

- For $m=n(\mathbf{u}(x, t)$ and $\mathbf{v}(x, t)$ are square matrices) either of the above special algebraic constraints lead to a trivial flow. In this case one needs the more general algebraic constraint

$$
\mathbf{u}^{T} \mathbf{v u}^{T}=\mathbf{u}^{T}, \quad \mathbf{v u}^{T} \mathbf{v}=\mathbf{v}
$$

- Pseudo-Hermitian reduction conditions

The Lax pair above is subject to

$$
H L(-\lambda) H=L(\lambda), \quad H A(-\lambda) H=A(\lambda)
$$

for $H=\operatorname{diag}\left(-\mathbb{1}_{m}, \mathbb{1}_{n}\right)$. If we impose an extra reduction

$$
\varepsilon_{m+n} S^{\dagger} \mathcal{E}_{m+n}=S, \quad \mathcal{E}_{m+n} A_{1,2}^{\dagger} \mathcal{E}_{m+n}=A_{1,2}
$$

where

$$
\begin{aligned}
\mathcal{E}_{m+n} & =\operatorname{diag}\left(\mathcal{E}_{m}, \mathcal{E}_{n}\right), \quad \mathcal{E}_{m}=\operatorname{diag}\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m}\right) \\
\mathcal{E}_{n} & =\operatorname{diag}\left(\epsilon_{m+1}, \epsilon_{m+2}, \ldots, \epsilon_{m+n}\right), \quad \epsilon_{j}^{2}=1, \quad j=1, \ldots, m+n
\end{aligned}
$$

then we immediately have

$$
\mathbf{v}=\mathcal{E}_{n} \mathbf{u}^{*} \mathcal{E}_{m}, \quad \mathbf{b}=\mathcal{E}_{n} \mathbf{a}^{*} \mathcal{E}_{m}
$$

That reduction condition is called pseudo-Hermitian.

- The zero curvature condition $[L(\lambda), A(\lambda)]=0$ leads to the connections:

$$
\begin{aligned}
& \mathbf{a}=\mathrm{i}\left(\mathbf{u}\left(\mathbf{v}^{T} \mathbf{u}\right)_{x}-\left(\mathbf{u} \mathbf{v}^{T}\right)_{x} \mathbf{u}\right), \\
& \mathbf{b}=\mathrm{i}\left(\left(\mathbf{v} \mathbf{u}^{T}\right)_{x} \mathbf{v}-\mathbf{v}\left(\mathbf{u}^{T} \mathbf{v}\right)_{x}\right)
\end{aligned}
$$

and the matrix system:

$$
\begin{aligned}
\mathbf{i} \mathbf{u}_{t}+\left[\left(\mathbf{u} \mathbf{v}^{T}\right)_{x} \mathbf{u}-\mathbf{u}\left(\mathbf{v}^{T} \mathbf{u}\right)_{x}\right]_{x} & =0 \\
\mathbf{i} \mathbf{v}_{t}+\left[\mathbf{v}\left(\mathbf{u}^{T} \mathbf{v}\right)_{x}-\left(\mathbf{v} \mathbf{u}^{\top}\right)_{x} \mathbf{v}\right]_{x} & =0
\end{aligned}
$$

- Examples

Example

Let us consider the case when $m=1$ and $n \geq 2$, i.e. \mathbf{u} is a n-component vector function.
Without any loss of generality we can set $\varepsilon_{1}=1$ and assume that at least one diagonal entry of \mathcal{E}_{n} is 1 . Then generalized HF acquires the following form:

$$
\mathbf{i} \mathbf{u}_{t}+\mathbf{u}_{x x}+\left(\mathbf{u} \mathbf{u}_{x}^{\dagger} \varepsilon_{n} \mathbf{u}\right)_{x}=0
$$

where u must satisfy

$$
\mathbf{u}^{T} \mathcal{E}_{n} \mathbf{u}^{*}=1
$$

That relation represents geometrically a sphere embedded in $\mathbb{R}^{2 n}$ provided $\varepsilon_{n}=\mathbb{1}_{n}$ and a hyperboloid in $\mathbb{R}^{2 n}$ otherwise.

Integrable Hierarchy and Recursion Operators

- General flow Lax pair Let us consider the following $L-A$ pair:

$$
\begin{aligned}
& L(\lambda):=\mathrm{i} \partial_{x}-\lambda S \\
& A(\lambda):=\mathrm{i} \partial_{t}+\sum_{j=1}^{N} \lambda^{j} A_{j}, \quad N \geq 2
\end{aligned}
$$

- Recurrence relations The condition $[L(\lambda), A(\lambda)]=0$ gives rise to:

$$
\begin{aligned}
& {\left[S, A_{N}\right]=0,} \\
& \ldots \\
& \mathrm{i} \partial_{x} A_{k}-\left[S, A_{k-1}\right]=0, \quad k=2, \ldots, N, \\
& \ldots \\
& \partial_{x} A_{1}+\partial_{t} S=0
\end{aligned}
$$

- Splitting of the coefficients

In order to resolve the recurrence relations we apply the following "adapted"splitting

$$
A_{j}=A_{j}^{\mathrm{a}}+A_{j}^{\mathrm{d}}, \quad j=1, \ldots, N
$$

of the coefficients of $A(\lambda)$, i.e. a splitting such that

$$
\left[S, A_{j}^{\mathrm{d}}\right]=0
$$

It is easily seen that

$$
A_{N}^{\mathrm{a}}=0
$$

Taking into account the constraint $S^{3}=S$ one picks up

$$
A_{N}=\left\{\begin{array}{lll}
c_{N} S, & N \equiv 1 & (\bmod 2) \\
c_{N} S_{1}, & N \equiv 0 & (\bmod 2)
\end{array}, \quad c_{N} \in \mathbb{R}\right.
$$

where

$$
S_{1}=S^{2}-\frac{2 r}{m+n} \mathbb{1}_{m+n}, \quad r \leq \min (m, n)
$$

- Resolving the recurrence relations through generating operators

$$
A_{j-1}^{\mathrm{a}}=\left\{\begin{array}{lll}
\Lambda A_{j}^{\mathrm{a}}+\mathrm{i}_{j} \mathrm{ad}_{S}^{-1} S_{1, x}, & j \equiv 0 & (\bmod 2) \\
\Lambda A_{j}^{\mathrm{a}}+\mathrm{i}_{j} \mathrm{ad}_{S}^{-1} S_{x}, & j \equiv 1 & (\bmod 2)
\end{array}, \quad c_{j} \in \mathbb{R}\right.
$$

where

$$
\begin{aligned}
\Lambda:= & \operatorname{iad}_{S}^{-1}\left\{\partial_{x}(.)^{\mathrm{a}}-\frac{S_{x}}{2 r} \partial_{x}^{-1} \operatorname{tr}\left[S\left(\partial_{x}(.)\right)^{\mathrm{d}}\right]\right. \\
& \left.-\frac{(m+n) S_{1, x}}{2 r(m+n-2 r)} \partial_{x}^{-1} \operatorname{tr}\left[S_{1}\left(\partial_{x}(.)\right)^{\mathrm{d}}\right]\right\} .
\end{aligned}
$$

The symbol ∂_{x}^{-1} stand for the (formal) right inverse operators of ∂_{x} and

$$
\operatorname{ad}_{S}^{-1}:=\frac{1}{4}\left(5 \operatorname{ad}_{S}-\operatorname{ad}_{S}^{3}\right)
$$

The operator Λ^{2} is called recursion (generating) operator.

- Description of the integrable hierarchy An arbitrary member of the integrable hierarchy can be written down as follows:

$$
\operatorname{iad}_{S}^{-1} S_{t}+\sum_{k} c_{2 k} \Lambda^{2 k} S_{1}+\sum_{k} c_{2 k-1} \Lambda^{2 k-1} S=0
$$

where we have extended the action of Λ on the S-commuting part by requiring

$$
\Lambda S:=\operatorname{iad}_{S}^{-1} S_{x}, \quad \Lambda S_{1}:=\operatorname{iad}_{S}^{-1} S_{1, x}
$$

Recursion Operators

- Gürses-Karasu-Sokolov method

An alternative approach to find recursion operators is Gürses-KarasuSokolov method. In order to see how it works, let us consider the (original) Lax representations:

$$
\begin{aligned}
\mathrm{i} L_{\tau} & =[L, \tilde{V}] \\
\mathrm{i} L_{t} & =[L, V]
\end{aligned}
$$

where

$$
L(\lambda)=\mathrm{i} \partial_{x}-\lambda S, \quad S=\left(\begin{array}{cc}
0 & \mathbf{u}^{T} \\
\mathbf{v} & 0
\end{array}\right), \quad \lambda \in \mathbb{C}
$$

and

$$
V(x, t, \lambda)=\sum_{k=1}^{N} \lambda^{k} A_{k}(x, t), \quad \tilde{V}(x, t, \lambda)=\sum_{k=1}^{N+2} \lambda^{k} \tilde{A}_{k}(x, t)
$$

are two adjacent flows with evolution parameters t and τ respectively.

- Interrelation between V and \tilde{V}

Due to the condition

$$
H V(-\lambda) H=V(\lambda), \quad H \tilde{V}(-\lambda) H=\tilde{V}(\lambda), \quad H=\operatorname{diag}\left(-\mathbb{1}_{m}, \mathbb{1}_{n}\right)
$$

the flows V and \tilde{V} are interrelated in the following way:

$$
\tilde{V}(x, t, \lambda)=\lambda^{2} V(x, t, \lambda)+B(x, t, \lambda)
$$

- Recurrence relations of Lax representation After substituting the above relations in the Lax representation, we obtain:

$$
\mathrm{i} L_{\tau}=\mathrm{i} \lambda^{2} L_{t}+[L, B]
$$

The remainder B is sought in the form (this implies $N=2$):

$$
B(x, t, \lambda)=\lambda^{2} B_{2}(x, t)+\lambda B_{1}(x, t)
$$

After substituting the explicit expression for B, we get the recurrence relations:

$$
\begin{aligned}
\mathrm{i} \partial_{t} S+\left[S, B_{2}\right] & =0 \\
\mathrm{i} \partial_{x} B_{2}-\left[S, B_{1}\right] & =0 \\
\partial_{\tau} S+\partial_{x} B_{1} & =0
\end{aligned}
$$

which are resolved to give

$$
S_{\tau}=\operatorname{ad}_{S} \Lambda^{2} \operatorname{ad}_{S}^{-1} S_{t}
$$

Since we may also define the recursion operator \mathcal{R} as

$$
S_{\tau}=\mathcal{R} S_{t}
$$

we immediately see that

$$
\mathcal{R}=\operatorname{ad}_{s} \Lambda^{2} \mathrm{ad}_{s}^{-1} .
$$

Conclusion

- We have introduced a matrix system containing all the known models generalizing the classical HF. As a particular case we have a pseudoHermitian reduction (not a complete description of all admissible reductions).
- We have demonstrated how one can describe an integrable hierarchy of a matrix HF in terms of recursion operators. This is not the most general hierarchy related to it however.
- We have applied the Gürses-Karasu-Sokolov method to construct recursion operators and compared them with those obtained in the analysis of recurrence relations of the zero curvature condition.

References

(1) Borovik A. E. and Popkov V. Yu., Completely Integrable Spin-1 Chains, Sov. Phys. JETPH 71 (1990) 177-185.
(2) Fordy A. and Kulish P., Nonlinear Schrödinger Equations and Simple Lie Algebras, Commun. Math. Phys. 89 (1983) 427-443.
(3) Golubchik I. Z. and Sokolov V. V., Multicomponent Generalization of the Hierarchy of the Landau-Lifshitz Equation, Theor. Math. Phys. 124 n. 1 (2000) 909-917.
(1) Gürses M., Karasu A. and Sokolov V., On Construction of Recursion Operators from Lax Representation. J. Math. Phys. 40 (1999) 6473-6490.
(0) Gerdjikov V., Mikhailov A. and Valchev T., Reductions of Integrable Equations on A.III-type Symmetric Spaces, J. Physics A: Math. Theor. 43 (2010) 434015.
(0) Valchev T. and Yanovski A. B., New Reductions of a Matrix Generalized Heisenberg Ferromagnet Equation, Pliska Stud. Math., 29 (2018) 179-188, arXiv: 1802.03591v1 [nlin.SI].

Appendix

Let us consider the Lax pair:

$$
\begin{aligned}
L(\lambda) & =\mathrm{i} \partial_{x}-\lambda S_{1}-\frac{1}{\lambda} S_{-1} \\
A(\lambda) & =\mathrm{i} \partial_{t}+\sum_{k=-2, \ldots, 2} \lambda^{k} A_{k}
\end{aligned}
$$

where

$$
S_{1}=\left(\begin{array}{cc}
0 & \mathbf{u}^{T} \\
\mathbf{v} & 0
\end{array}\right), \quad S_{-1}=\left(\begin{array}{cc}
0 & K_{m} \mathbf{u}^{T} K_{n} \\
K_{n} \mathbf{v} K_{m} &
\end{array}\right)
$$

are defined for some $n \times m$ matrices $\mathbf{u}(x, t)$ and $\mathbf{v}(x, t)=\mathcal{E}_{n} \mathbf{u}^{*} \mathcal{E}_{m}$. Moreover, we have

$$
\begin{array}{ll}
K_{m}=\operatorname{diag}\left(k_{1}, \ldots, k_{m}\right), & K_{n}=\operatorname{diag}\left(k_{m+1}, \ldots, k_{m+n}\right), \\
\mathcal{E}_{m}=\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right), & \mathcal{E}_{n}=\operatorname{diag}\left(\epsilon_{m+1}, \ldots, \epsilon_{m+n}\right),
\end{array}
$$

The above Lax pair is subject to the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ reduction

$$
\begin{aligned}
H L(-\lambda) H & =L(\lambda), & & H A(-\lambda) H=A(\lambda) \\
K L(1 / \lambda) K & =L(\lambda), & & K A(1 / \lambda) K=A(\lambda)
\end{aligned}
$$

where $H=\operatorname{diag}\left(-\mathbb{1}_{m}, \mathbb{1}_{n}\right)$ and $K=\operatorname{diag}\left(K_{m}, K_{n}\right)$. We impose the constraint:

$$
\mathbf{u}^{T} \mathbf{v u}^{T}=\mathbf{u}^{T}
$$

For the condition $[L, A]=0$ to lead to a local equation it is necessary and sufficient $m=1$. Then in the pseudo-Hermitian case the equation reads:

$$
\mathbf{i} \mathbf{u}+\left[\left(\mathbf{u} \mathbf{u}^{\dagger} \mathcal{E}_{n}\right)_{x} \mathbf{u}\right]_{x}+4\left(\mathbf{u}^{\dagger} K_{n} \mathcal{E}_{n} \mathbf{u}\right) \mathbf{u}=0
$$

Constraint:

$$
\mathbf{u}^{\dagger} \varepsilon_{n} \mathbf{u}=1
$$

